首頁 > 關(guān)于我們 > 行業(yè)資訊
對日益增長的可穿戴市場來說由于體積和尺寸都很小,幾乎沒有現(xiàn)成的印刷電路板標(biāo)準(zhǔn),這也給PCB設(shè)計(jì)制造留下了很大的發(fā)揮空間,使智能穿戴類產(chǎn)品的電路板更小更耐用更低功耗更安全是技術(shù)創(chuàng)新與材料創(chuàng)新共同面對的問題。在行業(yè)標(biāo)準(zhǔn)面世之前,我們不得不依靠在板級開發(fā)中所學(xué)的知識和制造經(jīng)驗(yàn),并思考如何將它們應(yīng)用于獨(dú)特的新興挑戰(zhàn)。有幾個領(lǐng)域需要我們特別加以關(guān)注,分別是:電路板基材選擇與制作工藝,射頻/微波設(shè)計(jì),電路板表面防護(hù)。
PCB疊層材料與制造工藝
PCB一般由疊層組成,這些疊層可能用纖維增強(qiáng)型環(huán)氧樹脂(FR4)、聚酰亞胺或羅杰斯(Rogers)材料或其它層壓材料制造。不同層之間的絕緣材料被稱為半固化片。
可穿戴設(shè)備要求很高的可靠性,因此當(dāng)PCB設(shè)計(jì)師面臨著使用FR4(具有最高性價比的PCB制造材料)或更先進(jìn)更昂貴材料的選擇時,這將成為一個問題。
如果可穿戴PCB應(yīng)用要求高速、高頻材料,F(xiàn)R4可能不是最佳選擇。FR4的介電常數(shù)(Dk)是4.5,更先進(jìn)的Rogers 4003系列材料的介電常數(shù)是3.55,而兄弟系列Rogers 4350的介電常數(shù)是3.66。
圖1:多層電路板的疊層圖,圖中展示了FR4材料和Rogers 4350以及核心層厚度。
一個疊層的介電常數(shù)指的是疊層附近一對導(dǎo)體之間的電容或能量與真空中這對導(dǎo)體之間電容或能量的比值。在高頻時,最好是有很小的損耗,因此,介電系數(shù)為3.66的Roger 4350比介電常數(shù)是4.5的FR4更適合更高頻率的應(yīng)用。
正常情況下,可穿戴設(shè)備用的PCB層數(shù)從4層到8層。層的構(gòu)建原則是,如果是8層PCB,它應(yīng)能提供足夠的地層和電源層并將布線層夾在中間。這樣,串?dāng)_中的紋波效應(yīng)就能保持最小,并能顯著減少電磁干擾(EMI)。
在電路板版圖設(shè)計(jì)階段,版圖安排方案一般是將大塊地層緊靠電源分配層。這樣可以形成很低的紋波效應(yīng),系統(tǒng)噪聲也能被減小到幾乎為零。這對射頻子系統(tǒng)來說尤其重要。
與Rogers材料相比,F(xiàn)R4具有較高的耗散因數(shù)(Df),特別是在高頻的時候。對于更高性能的FR4疊層來說,Df值在0.002左右,比普通FR4要好一個數(shù)量級。不過Rogers的疊層只有0.001或更小。當(dāng)將FR4材料用于高頻應(yīng)用時,就會在插損方面產(chǎn)生明顯的差異。插損被定義為在使用FR4、Rogers或其它材料時信號從A點(diǎn)傳輸?shù)紹點(diǎn)的功率損失。
可穿戴PCB要求更加嚴(yán)格的阻抗控制,對可穿戴設(shè)備來說這是一個重要的因素,阻抗匹配可以產(chǎn)生更加干凈的信號傳輸。在較早前,信號承載走線的標(biāo)準(zhǔn)公差是±10%。這個指標(biāo)對今天的高頻高速電路來顯然不夠好?,F(xiàn)在的要求是±7%,在有些情況下甚至達(dá)±5%或更小。這個參數(shù)以及其它變量會嚴(yán)重影響這些阻抗控制特別嚴(yán)格的可穿戴PCB的制造,進(jìn)而限制了能夠制造它們的商家數(shù)量。
采用Rogers特高頻材料做的疊層的介電常數(shù)公差一般保持在±2%,有些產(chǎn)品甚至可以達(dá)到±1%,相比之下FR4疊層的介電常數(shù)公差高達(dá)10%,因此,比較這兩種材料可以發(fā)現(xiàn)Rogers的插損特別低。與傳統(tǒng)的FR4材料相比,Rogers疊層的傳輸損耗和插損要低一半。
在大多數(shù)情況下,成本最重要。然而,Rogers能以可接受的價位提供相對低損耗的高頻疊層性能。對商業(yè)應(yīng)用來說,Rogers可以和基于環(huán)氧樹脂的FR4一起做成混合PCB,其中一些層采用Rogers材料,其它層采用FR4。
在選擇Rogers疊層時,頻率是首要考慮因素。當(dāng)頻率超過500MHz時,PCB設(shè)計(jì)師傾向于選擇Rogers材料,特別是對射頻/微波電路來說,因?yàn)樯厦娴淖呔€受到嚴(yán)格的阻抗控制時,這些材料可以提供更高的性能。
與FR4材料相比,Rogers材料還能提供更低的介電損耗,其介電常數(shù)在很寬的頻率范圍內(nèi)都很穩(wěn)定。另外,Rogers材料可以提供高頻工作要求的理想低插損性能。
Rogers 4000系列材料的熱膨脹系數(shù)(CTE)具有優(yōu)異的尺寸穩(wěn)定性。這意味著與FR4相比,當(dāng)PCB經(jīng)歷冷、熱和非常熱的回流焊循環(huán)時,電路板的熱脹冷縮可以在更高頻率和更高溫度循環(huán)下保持在一個穩(wěn)定的限值。
在混合疊層情形下,可以輕松地使用通用制造工藝技術(shù)將Rogers和高性能FR4混合在一起使用,因此也相對容易實(shí)現(xiàn)高的制造良率。Rogers疊層不需要專門的過孔準(zhǔn)備工序。
普通FR4無法實(shí)現(xiàn)非??煽康碾姎庑阅?,但高性能FR4材料確實(shí)有良好的可靠特性,比如更高的Tg,仍然相對較低的成本,并能用于種類廣泛的應(yīng)用,從簡單的音頻設(shè)計(jì)到復(fù)雜的微波應(yīng)用。
射頻/微波設(shè)計(jì)考慮
便攜式技術(shù)和藍(lán)牙為可穿戴設(shè)備中的射頻/微波應(yīng)用鋪平了道路。今天的頻率范圍正變得越來越動態(tài)。還在幾年前,甚高頻(VHF)被定義為2GHz~3GHz。但現(xiàn)在我們可以見到范圍在10GHz到25GHz之間的超高頻(UHF)應(yīng)用。
因此對可穿戴PCB來說,射頻部分要求更加密切地關(guān)注布線方面的問題,要把信號單獨(dú)分開,使產(chǎn)生高頻信號的走線遠(yuǎn)離地。其它考慮因素包括:提供旁路濾波器,足夠的去耦電容,接地,將傳輸線和回路線設(shè)計(jì)的幾乎相等。
旁路濾波器可以抑制噪聲內(nèi)容和串?dāng)_的紋波效應(yīng)。去耦電容需要放置在更靠近承載電源信號的器件引腳旁邊。
高速傳輸線和信號回路要求在電源層信號間布置一個地層,用于平滑噪聲信號產(chǎn)生的抖動。在較高的信號速度時,很小的阻抗失配都會造成不平衡的傳輸和接收信號,從而產(chǎn)生失真。因此必須特別留意與射頻信號有關(guān)的阻抗匹配問題,因?yàn)樯漕l信號具有很高的速度和特殊的容限。
射頻傳輸線要求控制阻抗以便將射頻信號從特定的IC基底傳送到PCB。這些傳輸線可以在外層、頂層和底層實(shí)現(xiàn),也可以設(shè)計(jì)在中間層。
在PCB射頻設(shè)計(jì)版圖期間使用的方法有微帶線、懸浮的帶狀線、共面型波導(dǎo)或接地。微帶線由固定長度的金屬或走線以及位于正下方的整個地平面或部分地平面組成。一般微帶線結(jié)構(gòu)中的特征阻抗從50Ω到75Ω。
圖2:共面波導(dǎo)可以在射頻線路和需要走線靠很近的線路附近提供更好的隔離。
懸浮帶狀線是另外一種布線和抑制噪聲的方法。這種線由內(nèi)層上固定寬度的布線和中心導(dǎo)體上下的大塊地平面組成。地平面夾在電源層中間,因此可以提供非常有效的接地效果。對可穿戴PCB射頻信號布線來說這是優(yōu)選的一種方法。
共面波導(dǎo)可以在射頻線路和需要走線靠近的線路附近提供更好的隔離。這種介質(zhì)由一段中心導(dǎo)體和兩旁或下方的地平面組成。傳送射頻信號的最佳方法是懸浮帶狀線或共面波導(dǎo)。這兩種方法可以在信號和射頻走線之間提供更好的隔離。
在共面波導(dǎo)兩邊推薦使用所謂的“過孔圍欄”。這種方法可以在中心導(dǎo)體的每個金屬地平面上提供一排接地過孔。在中間運(yùn)行的主要走線在每邊都有圍欄,因此給返回電流提供了到下面地層的捷徑。這種方法可以減少與射頻信號高紋波效應(yīng)有關(guān)的噪聲電平。4.5的介電常數(shù)保持與半固化片F(xiàn)R4材料相同,而半固化片—從微帶線、帶狀線或偏移帶狀線—的介電常數(shù)約3.8到3.9。
圖3:在共面波導(dǎo)的兩側(cè)推薦使用過孔圍欄。
在使用地平面的某些設(shè)備中,可能會使用盲孔來提高電源電容的去耦性能,并提供從器件到地的分流路徑。到地的分流路徑可以縮短過孔的長度,這樣可以達(dá)成兩個目的:你不僅創(chuàng)建了分流或地,而且可以減少具有小塊地的器件的傳輸距離,這是一個重要的射頻設(shè)計(jì)因素。
PCB表面防護(hù)
智能穿戴設(shè)備由于更多的是與人體親密接觸,比如智能手表、智能心率監(jiān)測設(shè)備、智能計(jì)步器、智能背包、智能戒指等,由于人本身的流動性很強(qiáng),所以使得智能穿戴設(shè)備相應(yīng)的處于比較復(fù)雜的環(huán)境中,比如遇到下雨、洗手、運(yùn)動等活動容易使智能穿戴類設(shè)備遭遇水、汗等物質(zhì)的侵?jǐn)_,所以智能穿戴類產(chǎn)品PCB設(shè)計(jì)和制造時還應(yīng)在最后環(huán)節(jié)考慮到表面防護(hù)的問題。
在PCB表面防護(hù)中主要需要做防水防潮、防酸堿鹽腐蝕,比較常見的做法是在裝配前做三防漆表面涂覆或者做灌封膠封堵,不過傳統(tǒng)防水防潮類三防漆由于表面膜層厚而堅(jiān)硬,使得散熱和維修很困難,并且個別成分的三防漆還會腐蝕金屬器件,直接導(dǎo)致電感等類似元器件的值發(fā)生變化,或者出現(xiàn)從漆膜內(nèi)部開始腐蝕的現(xiàn)象。
相比三防漆,近一兩年出現(xiàn)的納米涂層會在防水防潮防腐蝕方面有較好的表現(xiàn),由于膜層在0.1-10um之間,非常適合應(yīng)用于智能穿戴類設(shè)備上。納米涂層是由極小的納米顆粒排列形成的膜層,有效的降低PCB表面能量,市場上納米涂層類產(chǎn)品也比較繁多,但品質(zhì)參差不一,品質(zhì)較好的比如青山新材TIS-NM的R系列納米材料,目前已得到廣泛應(yīng)用,主要面向電路板防潮疏水耐鹽霧腐蝕方面的需求,散熱好,固化快,耐冷熱沖擊好,符合RoHS、REACH,無鹵,不破壞臭氧層,符合國家對電子產(chǎn)品用料的環(huán)保要求。
圖4:納米涂層的成膜原理
目前很多中小型智能穿戴設(shè)備制造商依然沒有重視PCB表面防護(hù)處理,主要還是更多的考慮生產(chǎn)成本的上升,然而如果不做表面防護(hù),產(chǎn)品的使用壽命和預(yù)防意外風(fēng)險(xiǎn)的能力就會大打折扣,殊不知如果因?yàn)镻CB表面元器件遇水氣氧化或者遇鹽霧腐蝕后所造成的售后維修成本的上升更可怕,維修一臺設(shè)備可能吞噬掉好幾部設(shè)備的利潤。
因此,高品質(zhì)的智能穿戴設(shè)備有必要根據(jù)應(yīng)用環(huán)境實(shí)際需求進(jìn)行嚴(yán)格的表面防護(hù)處理,制造商應(yīng)對PCB表面防護(hù)引起重視。